

Wir gestalten Zukunft.

Unabhängige Energie- und Klimaschutzberatung.

Energie- und Wärmewende gemeinsam gestalten

Die nächsten Veranstaltungen in Grafenhausen

<u>Donnerstag, 20.07.2023, 19:00 Uhr:</u> "Photovoltaik für die Eigenversorgung", Schwarzwaldhaus der Sinne

Dienstag, 28.09.2023, 18.30 Uhr:

"Gebäudesanierung für mehr Gebäudequalität und weniger Wärmeverbrauch", Schwarzwaldhaus der Sinne

Kontaktdaten

Martin Völkle

Energieagentur Südwest

07621/16 16 17-7 * 0151/ 23 90 03 87

martin.voelkle@energieagentur-suedwest.de

Energieagentur Südwest

07621/16 16 17-4 * 0175/ 66 48 47 3

joerg.weyden@energieagentur-suedwest.de

Nicole Römer

Energieagentur Südwest

07621/16 16 17-6 * 0160/ 43 66 83 3

nicole.roemer@energieagentur-suedwest.de

Jürgen Dilger

Energieagentur Südwest

0160/90 35 29 26

energiecheck@energieagentur-suedwest.de

3

aufgrund eines Beschlusses des Deutschen Bundestages

Wir gestalten Zukunft.

Unabhängige Energie- und Klimaschutzl

Wir gestalten Zukunft.

Unabhängige Energie- und Klimaschutzberatung.

Photovoltaik für die Eigenversorgung – Dein Dach für gutes Klima

Schwarzwaldhaus der Sinne, Grafenhausen, 20.07.2023

Nicole Römer, Energieagentur Südwest GmbH

Photovoltaik für die Eigenversorgung

Energieagentur Südwest GmbH

- Von den Landkreisen Lörrach und Waldshut und Energieversorgungsunternehmen getragene GmbH
- Kompetenzzentrum rund um Fragen der Energiewenden
- · unabhängige und neutrale Beratung

Bürger*innen

In Kooperation mit der Verbraucherzentrale

- Erstberatung zu Sanierung/ Neubau
- Erneuerbare Energien
- Fördermittelberatung

Kommunen

- European Energy Award
- Energetische Untersuchungen
 - Quartierskonzepte
 - Klimaschutzkonzepte
 - Gebäudeenergieberatung
- Kommunales Energiemanagement

Unternehmen

- Energetische Beratung um Effizienzpotenziale zu erschließen
- Einführung von Energiemanagement und -controlling
- Energieaudits

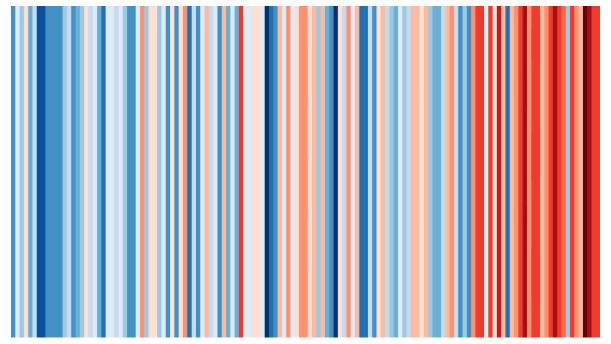
Photovoltaik für die Eigenversorgung

Photovoltaik Netzwerk Baden-Württemberg

- Solaroffensive vom Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg
- Steigerung des PV- Zubaus durch Informationen, Beratungen und Wissens- und Erfahrungsaustausch
- Laufzeit: 01.09.2018 31.01.2025
- 12 regionale Netzwerke in Baden-Württemberg
- Koordination der 12 regionalen Netzwerke durch die KEA-BW, Karlsruhe
- Fachliche Unterstützung durch Solarcluster e.V., Stuttgart
- Im Internet unter: www.photovoltaik-bw.de

Was beinhaltet der Vortrag?

- Warum eine Photovoltaik-Anlage für die Eigenversorgung?
- Was kann vor dem Bau einer PV-Anlage bedacht werden?
- Welches Dach, welche Komponenten, welche Größe für eine PV-Anlage?
- Wofür kann der Strom einer PV-Anlage genutzt werden?
- Wie wirtschaftlich kann eine PV-Anlage sein? Gibt es Fördermöglichkeiten und was ist steuerlich zu beachten?
- Was sagt die Photovoltaik-Pflicht-Verordnung?
- Exkurs: Was sind Steckersolarmodule?
 Was ist Mieterstrom?



Photovoltaik für die Eigenversorgung – Warum eine Photovoltaik-Anlage für die Eigenversorgung?

Die Jahrestemperaturen steigen

1881 2018

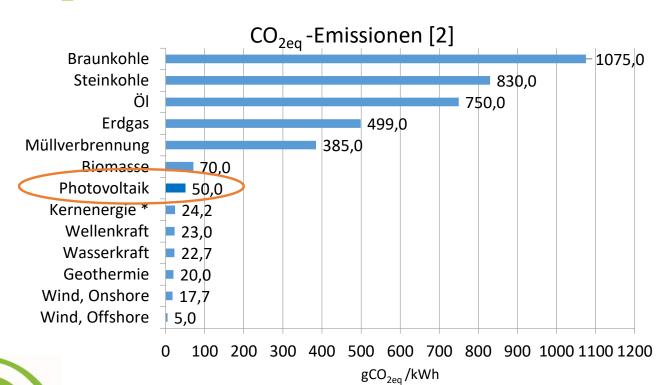
Jahrestemperaturen in Deutschland kälter als der Durchschnitt der Jahre 1960 - 1990

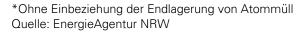
Jahrestemperaturen in Deutschland wärmer als der Durchschnitt der Jahre 1960 - 1990

"Warming Stripes Germany", © Prof. Ed Hawkins, University of Reading/UK

Photovoltaik für die Eigenversorgung – Warum eine Photovoltaik-Anlage für die Eigenversorgung?

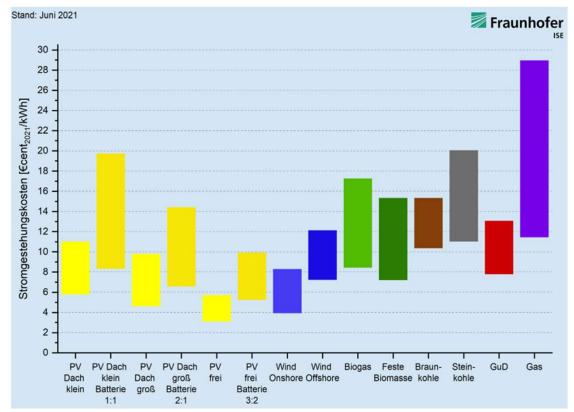
Die Jahrestemperaturen steigen

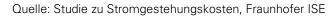

in Deutschland jetzt schon						
Temperatur seit 1881	↓ + 1,6 °C					
Tage über 30 Grad	÷ + 196 %					
Meeresspiegel (Pegel Cuxhaven) seit 1843	⋙ ↑ + 42 cm					
Pflanzenwachstum seit 1961	bis zu 3 Wochen früher					
Niederschlag im Winter seit 1881	~~~ + 27 %					
Tage unter null Grad	* - 49 %					


Photovoltaik für die Eigenversorgung – Warum eine Photovoltaik-Anlage für die Eigenversorgung?

CO₂-Emissionen einzelner Energieträger

Bezogen auf den gesamten Lebenszyklus einer PV-Anlage entstehen pro erzeugter kWh Solarstrom ca.


50 Gramm CO_{2eq}.



Photovoltaik für die Eigenversorgung – Wirtschaftlichkeit, Fördermöglichkeiten, steuerliche Aspekte

Stromgestehungskosten im Vergleich

Was beinhaltet der Vortrag?

- Warum eine Photovoltaik-Anlage für die Eigenversorgung?
- Was kann vor dem Bau einer PV-Anlage bedacht werden?
- Welches Dach, welche Komponenten, welche Größe für eine PV-Anlage?
- Wofür kann der Strom einer PV-Anlage genutzt werden?
- Wie wirtschaftlich kann eine PV-Anlage sein? Gibt es Fördermöglichkeiten und was ist steuerlich zu beachten?
- Was sagt die Photovoltaik-Pflicht-Verordnung?
- Exkurs: Was sind Steckersolarmodule?
 Was ist Mieterstrom?

Leistung und Arbeit

Leistung:

Zu einem bestimmten Zeitpunkt erbrachte/bezogene Menge

• 1 kW = 1.000 W

Arbeit/ Energie:

eine erbrachte/ bezogene Leistung über einen gewissen Zeitraum

• 1 kWh = 1.000 W * 1 h

Photovoltaik für die Eigenversorgung – Was kann vor dem Bau einer PV-Anlage bedacht werden?

Wie kann man Sonnenenergie nutzen?

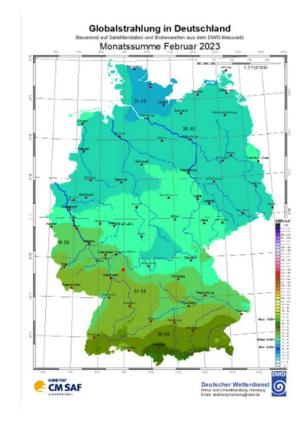
Photovoltaik

Was beinhaltet der Vortrag?

- Warum eine Photovoltaik-Anlage für die Eigenversorgung?
- Was kann vor dem Bau einer PV-Anlage bedacht werden?
- Welches Dach, welche Komponenten, welche Größe für eine PV-Anlage?
- Wofür kann der Strom einer PV-Anlage genutzt werden?
- Wie wirtschaftlich kann eine PV-Anlage sein? Gibt es Fördermöglichkeiten und was ist steuerlich zu beachten?
- Was sagt die Photovoltaik-Pflicht-Verordnung?
- Exkurs: Was sind Steckersolarmodule?
 Was ist Mieterstrom?

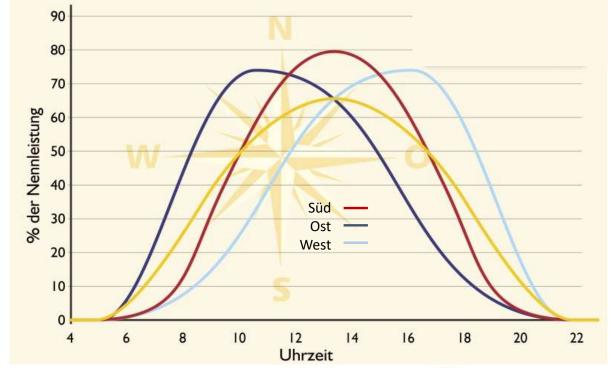
Süddeutschland hat viel Sonne

Einflussfaktoren


- Standort
- Dachausrichtung
- Verschattung

In einem sonnigen Moment kann die Strahlungsleistung mehr als 1.000 W/m² betragen, an wolkigen Wintertagen weniger als 100 W/m².

In einem Jahr beträgt die Einstrahlung in Deutschland je nach Standort 900 bis 1200 kWh/m².



Die Südausrichtung ist kein Muss

Einflussfaktoren

- Standort
- Dachausrichtung
- Verschattung

Alle Dachneigungen bringen Ertrag

Einflussfaktoren

- Standort
- Dachausrichtung
- Verschattung

Energieatlas - Solarpotenzial auf Dachflächen

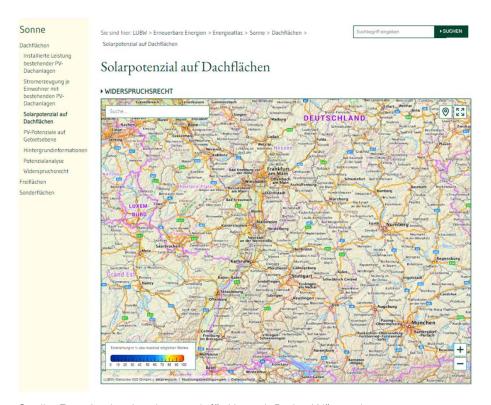
https://www.energie




PHOTOVOLTAIK

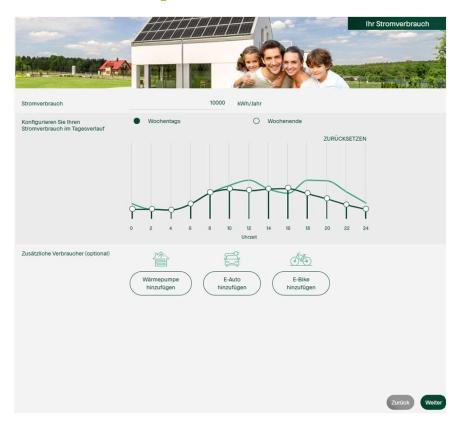
netzv

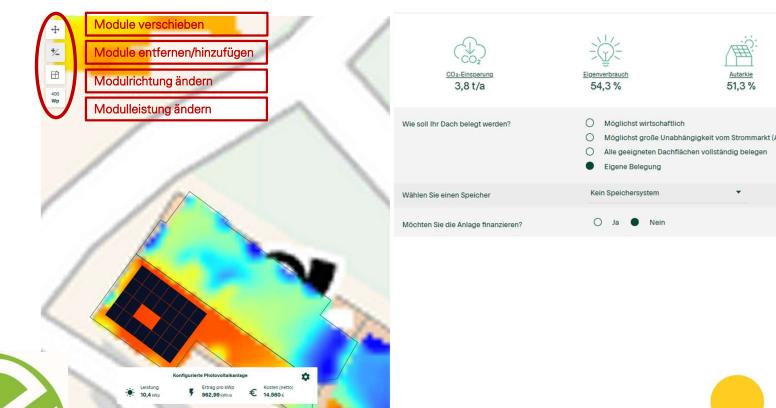
HOCHRHEIN-BODENSEE



Energieatlas - Solarpotenzial auf Dachflächen

Quelle: Energieatlas, Landesanstalt für Umwelt Baden-Württemberg

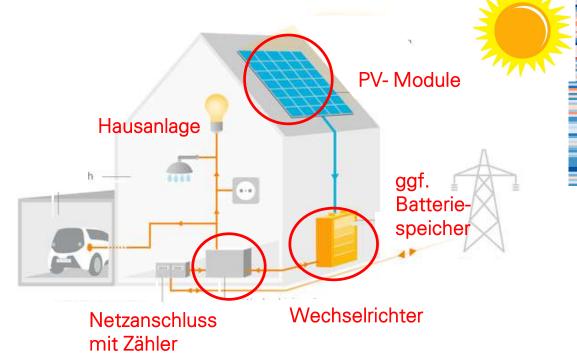




Kleine Unterschiede bei den Wirkungsgraden

Einflussfaktoren

- Standort
- Dachausrichtung
- Verschattung
- Wirkungsgrade



Die Komponenten einer PV-Anlage

Die ganze PV-Anlage im Überblick:


- PV-Module wandeln Sonnenlicht in Gleichstrom um
- Wechselrichter sorgt für den jeweils optimalen Betriebspunkt und wandelt Gleichstrom in 50 Hz-Wechselstrom
- Strom wird im Haushalt genutzt
- Optional speichert Batteriespeicher überschüssigen Gleichstrom
- Zweirichtungszähler für die Erfassung der Einspeisung / des Netzbezugs

Speicher erhöhen den Eigenverbrauch

Quelle: Bundesverband Solarwirtschaft

Faustformeln zur Auslegung

Leistung: 1 kWp

Dachfläche: 6 m²

Kosten: ca. 2.000 € *

* = für Module, Wechselrichter, Montage

Ertrag: 1.000 kWh/a

Einsparung: ca. 10t CO₂

Durchschnittlicher Verbrauch: 1.000 kWh/pro Person und Jahr

Faustformeln zur Auslegung - Speicher

6.000 – 10.000 Ladezyklen / 10-15 Jahre Lebenserwartung / ca. 250 Ladezyklen im Jahr / 10° bis 25°C am Aufstellort

Faustformel: 1.000 kWh Stromverbrauch = 1 kWh Kapazität

Welche Größe für ein Einfamilienhaus?

5,2 kWp

ca. 30 m² Dachfläche

z.B. 14 Module à 370 W

ca. 10.000 €

5.000 kWh pro Jahr

10 kWp

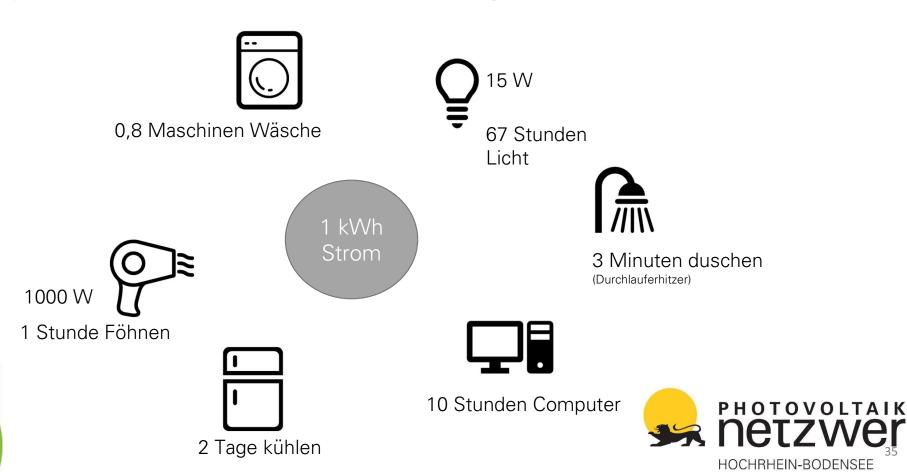
ca. 60 m² Dachfläche

z.B. 27 Module à 370 W

ca. 20.000 €

10.000 kWh pro Jahr

Quellen: © Photovoltaik-Netzwerk BW/ Kuhnle&Knödler/ EA Südwest


Was beinhaltet der Vortrag?

- Warum eine Photovoltaik-Anlage für die Eigenversorgung?
- Was kann vor dem Bau einer PV-Anlage bedacht werden?
- Welches Dach, welche Komponenten, welche Größe für eine PV-Anlage?
- Wofür kann der Strom einer PV-Anlage genutzt werden?
- Wie wirtschaftlich kann eine PV-Anlage sein? Gibt es Fördermöglichkeiten und was ist steuerlich zu beachten?
- Was sagt die Photovoltaik-Pflicht-Verordnung?
- Exkurs: Was sind Steckersolarmodule?
 Was ist Mieterstrom?

Photovoltaik für die Eigenversorgung – Wofür kann der Strom einer PV-Anlage genutzt werden?

Was kann man mit 1 kWh machen?

Photovoltaik für die Eigenversorgung – Wofür kann der Strom einer PV-Anlage genutzt werden?

2.000 - 3.500

3.200 - 5.000

3.300 - 4.700

Stromverbrauch in Haushalten

1.700 - 2.000

2.500 - 3.200

2.700 - 3.300

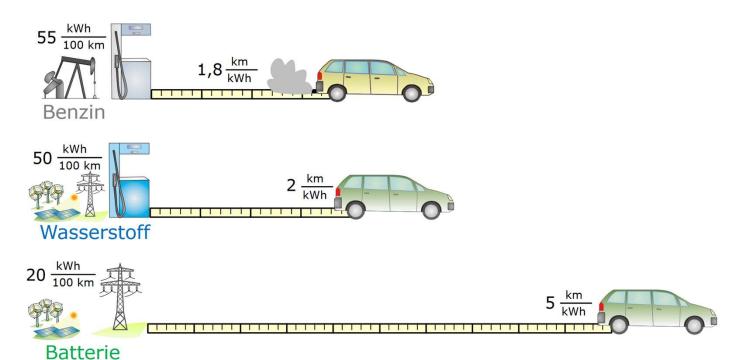
3.500 - 4.000

Person	Gebäude	Verbrauch Niedrig	Verbrauch Mittel	Verbrauch Ho	ch		
İ	Щ	800 – 1.000	1.000 – 1.600	1.600+			
	開う	1.000 - 1.400	1.400 – 2.200	2.200+			
	•	1.300 – 1.600	1.600 – 3.200	3.200+			
	ft ä	1.500 – 1.900	1.900 – 3.500	3.500+	Durchschnittlicher Stromverbrauch pro Jah		rbrauch pro Jahr
ŤŤ	睭	1.200 – 1.500	1.500 – 2.500	2.500+	Personen	Stromverbrauch Ø	inkl. Warmwasser elekt
	囲う	1.800 – 2.300	2.300 - 3.500	3.500+	1 Person 2 Personen	1.500 kWh	2.000 kWh
	^	2.000 - 2.400	2.400 - 3.500	3.500+		2.100 kWh	3.000 kWh
	đζ	2.400 - 3.000	3.000 – 4.500	4.500+	3 Personen	2.600 kWh	4.000 kWh
***	睭	1.500 – 1.900	1.900 – 3.000	3.000+		2.900 kWh	4.500 kWh
	開う	2.500 - 3.000	3.000 - 4.500	4.500+	4 Personen	170.00	
	A	2.500 - 3.000	3.000 – 4.200	4.200+	5 Personen	3.500 kWh	5.200 kWh
	∱ភ	3.000 - 3.500	3.500 - 5.600	5.600+			

3.500+

5.000+

4.700+


開う

A Ä

Photovoltaik für die Eigenversorgung – Wofür kann der Strom einer PV-Anlage genutzt werden?

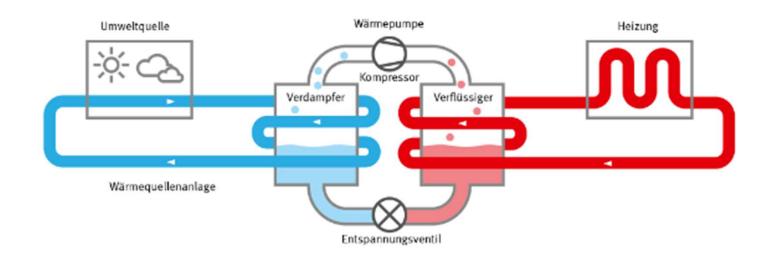
Elektromobilität

Photovoltaik für die Eigenversorgung – Wofür kann der Strom einer PV-Anlage genutzt werden ?

Elektromobilität

Durchschnittlicher Verbrauch Elektroauto	20 kWh/ 100 km
Angenommene Fahrleistung	20.000 km pro Jahr
PV Anlage für Elektroauto	4 kWp

	Elektroauto	Benzinauto
Verbrauch (pro 100 km)	20 kWh	90 kWh = rund 9 Liter
Kosten (pro 100 km)	2,00 € / 8,00 €	15,75 €
CO ₂ (pro 100 km)	0 kg	20 kg



Annahmen: Stromerzeugungskosten aus PV Anlage 0,10 €/kWh, Ladesäule 0,40 €/ kWh, Benzinpreis 1,75 €/l

Photovoltaik für die Eigenversorgung – Wofür kann der Strom einer PV-Anlage genutzt werden?

Wärmepumpe

Quelle: Verbraucherzentrale NRW

Was beinhaltet der Vortrag?

- Warum eine Photovoltaik-Anlage für die Eigenversorgung?
- Was kann vor dem Bau einer PV-Anlage bedacht werden?
- Welches Dach, welche Komponenten, welche Größe für eine PV-Anlage?
- Wofür kann der Strom einer PV-Anlage genutzt werden?
- Wie wirtschaftlich kann eine PV-Anlage sein? Gibt es Fördermöglichkeiten und was ist steuerlich zu beachten?
- Was sagt die Photovoltaik-Pflicht-Verordnung?
- Exkurs: Was sind Steckersolarmodule?
 Was ist Mieterstrom?

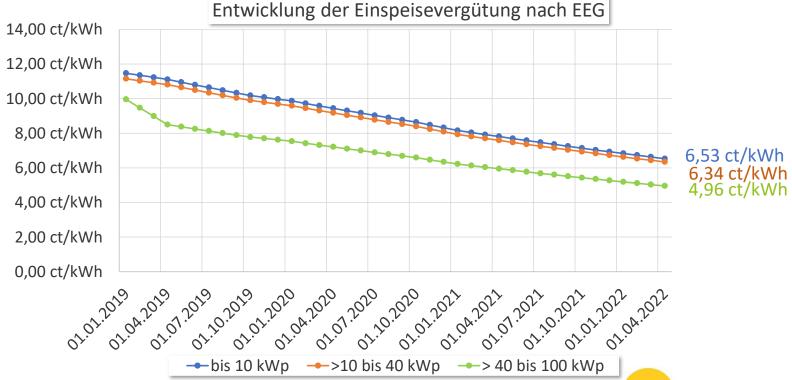
Eine PV-Anlage ist eine wirtschaftliche Investition

Investitions- und Betriebskosten

Investitionskosten (brutto):

4 kWp	6 kWp	8 kWp	10	12	14	16	18	20
3.0	15)	- 18	kWp	kWp	kWp	kWp	kWp	kWp
1.900	1.740	1.630	1.550	1.440	1.400	1.360	1.320	1.300
€/kWp	€/kWp	€/kWp	€/kWp	€/kWp	€/kWp	€/kWp	€/kWp	€/kWp

(Daten des photovoltaikforum.com nach Auswertungen der HTW Berlin)


Betriebskosten:

Versicherung, Wartung, zusätzliche Stromzähler, ggf. Steuern, Austausch von Komponenten – jährlich ca. 1,5% der Investitionskosten

Einspeisevergütung

Für 20 Jahre fester Vergütungsanspruch gemäß EEG für den in das öffentliche Stromnetz eingespeisten Strom ab dem Zeitpunkt der Inbetriebnahme

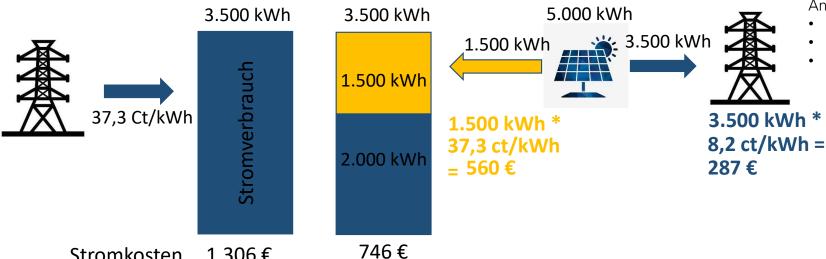
Einspeisevergütung Überschusseinspeisung

Fördersätze nach	ch EEG 2023			
für Eigenversor	gungs-Gebäude-P	V-Anlagen, die 2022 ans Net	z gehen	
alle Angaben in 0	Ct/kWh			
anzulegender We	ert		Feste	
(Berechnungsgru	ndlage)		Einspeisevergütu	ıng
			(minus 0,4 Ct/kW	h)
bis 10 kWp	8,6	bis 10 kWp	8,2	
bis 40 kWp	7,5	bis 40 kWp	7,1	
bis 750 kW	6,2	bis 100 kWp	5,8	
(über 100 kWp	keine feste Einspeis	evergütung - Direktvermarktun	g verpflichtend)	

Tab: Sutter. Grundlage: EEG 2023

Quelle: Deutsche Gesellschaft für Sonnenenergie (DGS) gemäß EEG

Einspeisevergütung Volleinspeisung


Fördersätze r	nach EEG	2023			
für Volleinspe	eise-Gebä	aude-PV-Anlagen	, die 2022 ans Netz ge	hen	
alle Angaben i	n Ct/kWh				
anzulegender \	Wert	Zuschlag bei anzulegender Wert		Feste	
		Volleinspeisung	gesamt	Einspeisevergütung	
bis 10 kWp	8,6	4,8	13,4	13	
bis 40 kWp	7,5	3,8	11,3	10,9	
bis 100 kW	6,2	5,1	11,3	10,9	
bis 300 kW	6,2	3,2	9,4		
bis 750 kW	6,2		6,2		

Tab: Sutter. Grundlage: EEG 2023

Quelle: Deutsche Gesellschaft für Sonnenenergie (DGS) gemäß EEG

Wirtschaftlichkeit durch Vergütung und Einsparung

Annahmen:

PV-Anlage 5 kWp

(netto): 10.000 €

Eigenverbrauch 30% Investitionskosten

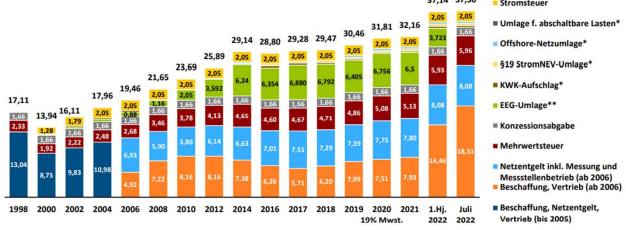
Amortisationszeit: 10.000 € / 697 € = 14,3 Jahre

Technische Nutzungsdauer: 20+ Jahre

1.306€

Stromkosten

Einsparung Stromkosten: 560 €/a EEG-Vergütung: +287 €/a Betriebskosten: - 150 €/a Jährliche Bilanz: 697 €/a


Strompreisentwicklung

21.07.2022 Folie 8 BDEW-Strompreisanalyse Juli 2022

Strompreis für Haushalte

Durchschnittlicher Strompreis für einen Haushalt in ct/kWh, Jahresverbrauch 3.500 kWh, Grundpreis anteilig enthalten, Tarifprodukte und Grundversorgungstarife inkl. Neukundentarife enthalten, nicht mengengewichtet***

^{*}Einzelwerte s. Folie 11 **EEG-Umlage entfällt ab 01.07.2022

^{***}ausführliche methodische Erläuterung zur Durchschnittsbildung s. Folie 2

Finanzierungsmöglichkeit für PV-Anlagen und Batteriespeicher

Erneuerbare Energien - Standard

Der Förderkredit für Strom und Wärme

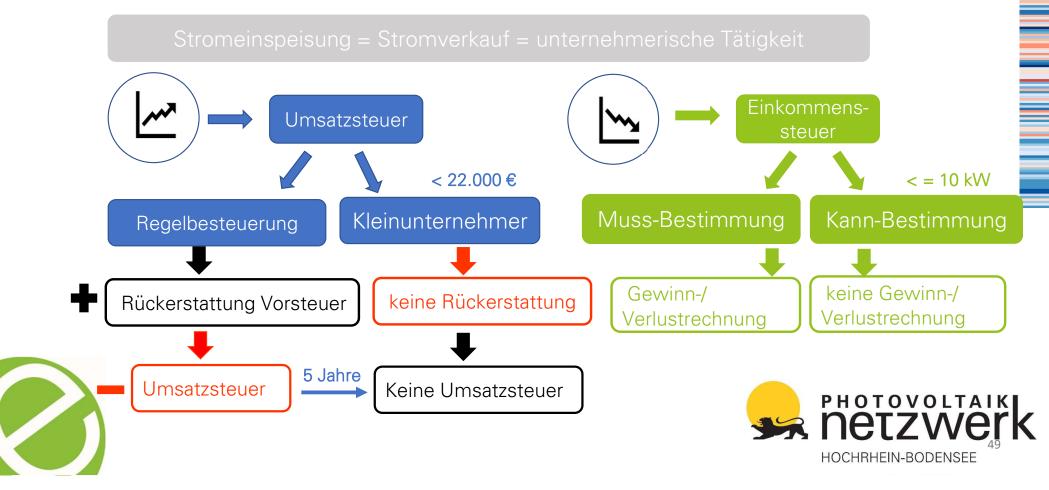
KREDIT

Das Wichtigste in Kürze

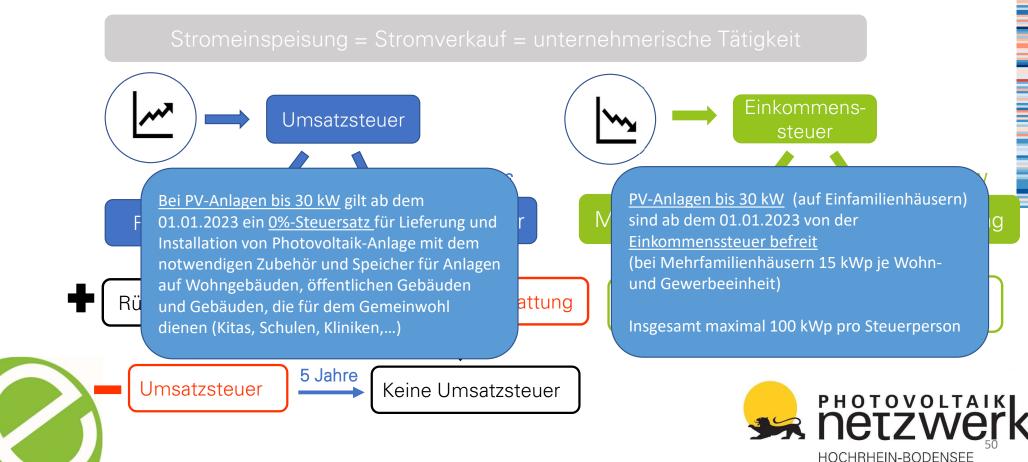
- · Für Anlagen zur Erzeugung von Strom und Wärme, für Netze und Speicher
- · Für Photovoltaik, Wasser, Wind, Biogas und vieles mehr
- · Für Privatpersonen, Unternehmen und öffentliche Einrichtungen

Antrag vorbereiten 🗸

Attraktive Konditionen für Photovoltaikanlagen und Batteriespeicher


Ab sofort erhalten Sie einen Kredit für Photovoltaikanlagen (Aufdach/Fassade) sowie für Batteriespeicher für Photovoltaikanlagen Aufdach/Fassade zu gesonderten Konditionen. Hierfür sind im Kreditantrag die zugehörigen Verwendungszwecke "Photovoltaikanlage – Aufdach/Fassade" und "Batteriespeicher erneuerbare Energien-Anlagen" auszuwählen. Die Konditionen der sechs Laufzeit-Varianten "PV-Aufdach beihilfefrei" finden Sie in unserer <u>Konditionenübersicht.</u>

Für Zuschüsse sprechen Sie bitte das Landesförderinstitut Ihres Bundeslandes an oder nutzen Sie die <u>Förderdatenbank</u> des Bundesministeriums für Wirtschaft und Klimaschutz.



Fragen Sie einen Steuerberater...

Fragen Sie einen Steuerberater...

Schritte auf dem Weg zur PV-Anlage

- Angebote anfragen
- Handwerksbetrieb beauftragen
- örtlichen Verteilnetzbetreiber informieren, Festlegen des Netzanschlusspunktes, "Netzanschlussbegehren"stellen
- Stromlieferungsvertrag ist keine Pflicht. Es wird dennoch empfohlen, weil so regelmäßige Abschlagszahlungen (wie beim Strombezug) vereinbart werden können.
- Installation (Gerüststellung, Modulmontage, Wechselrichtermontage, Verkabelung, Netzanschluss)
- Fertigstellung: Inbetriebnahme mit Protokoll und Erläuterung, Mängelbeseitigung
- Anmeldung bis einen Monat nach der Inbetriebnahme der Photovoltaikanlage!! www.marktstammdatenregister.de

Was beinhaltet der Vortrag?

- Warum eine Photovoltaik-Anlage für die Eigenversorgung?
- Was kann vor dem Bau einer PV-Anlage bedacht werden?
- Welches Dach, welche Komponenten, welche Größe für eine PV-Anlage?
- Wofür kann der Strom einer PV-Anlage genutzt werden?
- Wie wirtschaftlich kann eine PV-Anlage sein? Gibt es Fördermöglichkeiten und was ist steuerlich zu beachten?
- Was sagt die Photovoltaik-Pflicht-Verordnung?
- Exkurs: Was sind Steckersolarmodule?
 Was ist Mieterstrom?

Photovoltaik-Pflicht-Verordnung

vom 11. Oktober 2021, aktualisiert am 21. April 2022

Ab 1. Januar 2022:

PV-Pflicht für alle Neubauten Nichtwohngebäude

Eingang Bauantrag

PV-Pflicht für alle offenen Parkplätze ab 35 Stellplätzen

Ab 1. Mai 2022:

• PV-Pflicht auf allen Neubauten von Wohngebäuden

Eingang Bauantrag

Ab 1. Januar 2023:

PV-Pflicht im Bestand bei allen grundlegende Dachsanierungen

Die Pflicht kommt zum Tragen, wenn...

- ... eine zur Solarnutzung geeignete Dach- der Stellplatzfläche vorhanden ist
- ... der Umfang der Nutzung so angelegt ist, dass die Photovoltaikanlage wirtschaftlich betrieben werden kann

Wann ist eine Dachfläche zur Solarnutzung geeignet?

- Zusammenhängende Mindestfläche von 20 m²
- Hinreichend von der Sonne beschienen nicht oder geringfügig verschattet d.h. min. 75% des Ertrages einer Anlage mit 35° und Südausrichtung
- hinreichend eben
- bei Flachdächern:
 Neigung kleiner 20°
- bei geneigten Dächern:

Neigung von 20° bis 60°, nach Ost und West und allen dazwischenliegenden Himmelsrichtungen zur südlichen Hemisphäre

Optimierungsgebot berücksichtigen!

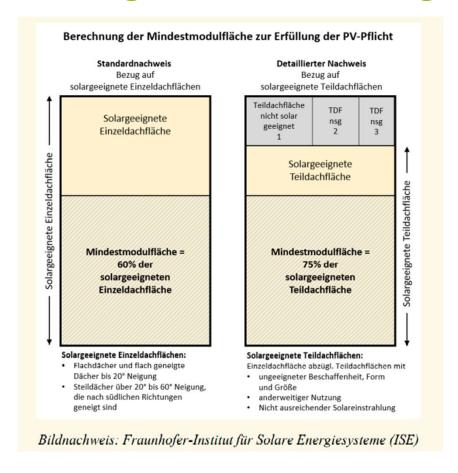
Welche Leistung soll die PV-Anlage haben?

Standardnachweis

60% der Eignungsfläche sind für die Photovoltaikanlage zu nutzen

Erweiterter Nachweis

75% der Eignungsfläche sind für die Photovoltaikanlage zu nutzen


Die Prozente sind jeweils um 50% reduziert, wenn eine Pflicht zur Dachbegrünung besteht.

Maximal besteht die Pflicht für eine Anlagenleistung von 300 kW.

Welche Leistung soll die PV-Anlage haben?

Welche Leistung soll die PV-Anlage haben?

Alternativer Berechnungsmaßstab:

Beim Neubau von Wohngebäuden oder bei grundlegender Dachsanierung

- Installierte Mindestleistung von 0,06 kWp je m² neu überbauter Grundstücksfläche
- Erleichterung für privat Bauherren und Bauherrinnen

Gibt es auch Ersatzmaßnahmen?

Statt eine Photovoltaikanlage für den Eigenbetrieb zu realisieren, können auch folgende Ersatzmaßnahmen zur Erfüllung der PV-Pflicht realisiert werden:

- Solarthermie (ggf. Kombination)
- Nutzung von anderen Flächen eines Gebäudes oder in dessen unmittelbaren räumlichen Umgebung
- Verpachtung bzw. Contracting

Wenn die PV-Anlage nicht wirtschaftlich sein sollte?

Wenn die Durchführbarkeit des Bauvorhabens gefährdet ist, also eine wirtschaftliche Unzumutbarkeit vorliegt, kann eine kleinere Photovoltaikanlage installiert werden :

- Neubau Wohngebäude: 10 % der Baukosten des Neubaus
- Neubau Nichtwohngebäude: 20 % der Kosten des Neubaus
- Neubau Parkplatz: 30 % der Kosten des Neubaus

Wann ist eine Dachsanierung grundlegend?

Als grundlegende gilt eine Dachsanierung, wenn die Abdichtung oder die Eindeckung eines Daches vollständig erneuter wird. Das gilt auch bei einer Wiederverwendung von Baustoffen. Ausgenommen sind Baumaßnahmen, die ausschließlich zur Behebung kurzfristig eingetretener Schäden vorgenommen werden.

Wenn die PV-Anlage nicht wirtschaftlich sein sollte?

Wenn die Durchführbarkeit des Bauvorhabens gefährdet ist, also eine wirtschaftliche Unzumutbarkeit vorliegt, kann eine Befreiung von der Photovoltaik-Pflicht ausgesprochen werden.

vollständige Befreiung

Die Durchführbarkeit gilt als insgesamt gefährdet, wenn folgende Schwellenwerte überschritten werden:

Dachsanierung: Netzanschluss- und sonstige Systemkosten

(= bau- und elektrotechnische Maßnahmen,

z.B. Brandschutz, Bausicherheit, Statik)

max. 70% der PV-Kosten

PHOTOVOLTAIK NETZWERK
HOCHRHEIN-BODENSEE

unbillige Härte im Einzelfall

Was beinhaltet der Vortrag?

- Warum eine Photovoltaik-Anlage für die Eigenversorgung?
- Was kann vor dem Bau einer PV-Anlage bedacht werden?
- Welches Dach, welche Komponenten, welche Größe für eine PV-Anlage?
- Wofür kann der Strom einer PV-Anlage genutzt werden?
- Wie wirtschaftlich kann eine PV-Anlage sein? Gibt es Fördermöglichkeiten und was ist steuerlich zu beachten?
- Was sagt die Photovoltaik-Pflicht-Verordnung?
- Exkurs: Was sind Steckersolarmodule?
 Was ist Mieterstrom?

Steckersolarmodule

Motivation

- auch als Mieter selbst Strom erzeugen können
- Strombezug reduzieren

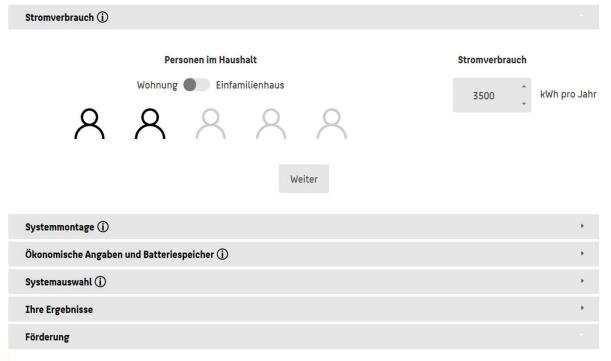
Technik

- Module produzieren Strom, der über einen Stecker direkt in einen End-Stromkreis einer Wohnung fließt
- begrenzt auf 600 W (z.B. 2 Module)

Steckersolarmodule

Normkonform

- Wieland Stecker, Energie-Steckdose
- Zähler mit Rücklaufsperre
- Einbau durch Elektriker


Wirtschaftlichkeit

- Wirtschaftlichkeit wäre nach ca. 4 bis 7 Jahren möglich
- Wirtschaftlichkeit verschlechtert sich ggf. durch Kosten für Elektriker

Steckersolarmodule

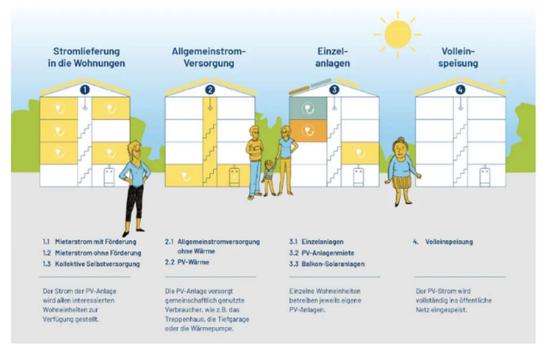
Quelle: https://solar.htw-berlin.de/rechner/stecker-solar-simulator

Steckersolarmodule

	1 Modul	2 Module
	(300 W, 470 €)	(600 W, 650 €)
Stromerzeugung pro Jahr	207 kWh	414 kWh
Vermiedener Strombezug pro Jahr	195 kWh	337 kWh
Nutzungsgrad	94 %	81 %
Selbstversorgung	6 %	10 %
Jährliche Ersparnis	72€	125€
Ersparnis während der Betriebszeit	1.082 €	1.870 €
Bilanz nach Betrachtungszeitraum	612 €	1.220 €
Stromgestehungskosten pro kWh	16,1 ct	12,9 ct
Amortisationszeit	7 Jahre	6 Jahre
Vermiedene CO ₂ -Emissionen	823 kg	1.421 kg

Quelle: https://solar.htw-berlin.de/rechner/stecker-solar-simulator

Was beinhaltet der Vortrag?


- Warum eine Photovoltaik-Anlage für die Eigenversorgung?
- Was kann vor dem Bau einer PV-Anlage bedacht werden?
- Welches Dach, welche Komponenten, welche Größe für eine PV-Anlage?
- Wofür kann der Strom einer PV-Anlage genutzt werden?
- Wie wirtschaftlich kann eine PV-Anlage sein? Gibt es Fördermöglichkeiten und was ist steuerlich zu beachten?
- Was sagt die Photovoltaik-Pflicht-Verordnung?
- Exkurs: Was sind Steckersolarmodule?

Was ist Mieterstrom?

Photovoltaik für die Eigenversorgung – Mieterstrom

Mieterstrom – Photovoltaik für Mehrfamilienhäuser

Quelle: Betriebskonzepte für Photovoltaik auf Mehrfamilienhäusern, Energieagentur Regio Freiburg GmbH

Mieterstrom – Photovoltaik für Mehrfamilienhäuser

Noch vor der Sommerpause sollen Verbesserungen für Photovoltaik-Anlagen aus dem "Solarpaket 1" umgesetzt werden vom Kabinett verabschiedet und auf den parlamentarischen Weg gebracht werden.

Im Bereich Mieterstrom könnten es folgende Maßnahmen sein:

- Einführung des virtuellen Summerzählermodells
- Erleichtern der gemeinschaftlichen Versorgung innerhalb eines Gebäudes
- Entbürokratisierung des bestehenden Miterstrommodells

Was beinhaltet der Vortrag?

- Warum eine Photovoltaik-Anlage für die Eigenversorgung?
- Was kann vor dem Bau einer PV-Anlage bedacht werden?
- Welches Dach, welche Komponenten, welche Größe für eine PV-Anlage?
- Wofür kann der Strom einer PV-Anlage genutzt werden?
- Wie wirtschaftlich kann eine PV-Anlage sein? Gibt es Fördermöglichkeiten und was ist steuerlich zu beachten?
- Was sagt die Photovoltaik-Pflicht-Verordnung?
- Exkurs: Was sind Steckersolarmodule?

Was ist Mieterstrom?

Was nun als nächstes?

Photovoltaik für die Eigenversorgung – Beratungsleistungen

Unsere Beratungsangebote

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

- Gebäude sanieren
- Heizung optimieren
- DezentraleWärmepumpennutzung
- PV auf Dächern

Gebäude-Beratung

betrachtet Strom- und Wärmeverbrauch sowie Heizungsanlage und Gebäudehülle; für Gebäudeeigentümer*innen.

Heiz-Beratung

prüft, ob bei Heizsystem Verbrauch und Leistung im richtigen Verhältnis stehen; für Gebäudeeigentümer*innen.

Heiztechnik-Beratung

analysierten unabhängig und neutral mögliche Heiztechniken; für Gebäudeeigentümer*innen.

Photovoltaik-Beratung

beurteilt Dachfläche bezüglich PV-Eignung; für Eigentümer*innen.

Photovoltaik für die Eigenversorgung – Beratungsleistungen

verbraucherzentrale Energieberatung

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Beratungstage in Grafenhausen

In Grafenhausen finden im Rahmen der <u>Wärmewende-Kampagne</u> Energieberatungstage **jeden 2. Donnerstag im Monat von 9 bis 15 Uhr** statt.

Der Beratungstag beginnt nach den Veranstaltungen zu "Realisierung von PV-Anlagen" am Donnerstag, 20.07.2023 und "Schritt für Schritt zur Sanierung" am Donnerstag, 28.09.2023 im Oktober 2023.

Achtung: Im Oktober findet der Beratungstag am Mittwoch, 11.10.2023 statt.

Bei Interesse melden Sie sich bitte bei Herrn Wölm:

Tel.: +49 7748 520-25

E-Mail: k.woelm@grafenhausen.de

Halten Sie beim Termin bitte Ihre Energieverbräuche, Baupläne und Schornsteinfegerprotokolle bereit.

Photovoltaik für die Eigenversorgung – Literatur

Webseiten

Viele Flyer und Broschüren rund ums Thema Photvoltaik

www.photovoltaik-bw.de

Rechner

- www.energieatlas-bw.de/sonne/dachflachen
- https://solar.htw-berlin.de/rechner/unabhaengigkeitsrechner

FAQ Photovoltaikpflicht

• um.baden-wuerttemberg.de/de/energie/erneuerbareenergien/sonnenenergie/photovoltaik/fragen-und-antworten-zur-photovoltaikpflicht

Steckersolarmodule

- www.pvplug.de
- https://solar.htw-berlin,de/rechn/stecker-solar-simulator
- https://balkon.solar

Mieterstrom

• www.photovoltaik-bw.de/themen/photovoltaik-auf-mehrfamilienhaeusern HOTOVOLTAIKI NETZWERK

HOCHRHEIN-BODENSEE

Photovoltaik für die Eigenversorgung – Handwerksbetriebe

Handwerksbetriebe

Liste der Innungsbetriebe im Landkreis Waldshut, die Leistungen rund um Installation von PV-Anlagen und Speichern anbieten - Stand: Mai 2022

Seite 1 von 1

Nr.		Firma	Name	Vorname	Straße	PLZ	Ort	Tel	E-Mail	Internet
1.	PV, S	Binkert Haustechnik GmbH	Binkert		Am Riedbach 3	79774	Albbruck-Birndorf	07753-9210 0	mail@binkert.de	www.binkert.de
2.	PV	Elektro Buck GmbH	Buck	Roman	Dr. Rudolf-Eberle- Str. 40		Albbruck	07753-977 700	info@elektro-buck.de	www.elektro-buck.de
3.	PV	Hierholzer Energiespartechnik GmbH	Meier	Bernd	Etzwihler Str. 1			07753-1777	meier@hierholzer-gmbh.de	www.hierholzer-gmbh.de
4.	PV	TET Tröndle Elektro Technik	Tröndle	Andreas	Schindelweg 4			07753-923 10	info@tet-troendle.de	www.tet.troendle.de
5.	PV	Elektro Rufle	Rufle	Franz	Langfuhren 5		Bad Säckingen	07761-3003	f.rufle@elektro-rufle.de	www.elektro-rufle.de
6.	PV	Elektro Dietsche	Dietsche	Adrian	Martinstr. 25	79848	Bonndorf	07703-910 37	info@elektro-dietsche.de	www.elektro-dietsche.de
7.	PV	Elektrohaus Wietschorke	Wietschorke	Günther + Christoph	Martinstr. 35	79848	Bonndorf	07703-560	info@elektro-wietschorke.de	www.elektro-wietschorke.de
8.	PV	Ebner Haustechnik	Ebner	Oskar	Wolpadingen, Dorfstr. 7		Dachsberg	07755-8452	info@ebner-haustechnik.de	www.ebner-haustechnik.de
9.	PV	Hauser Elektrotechnik	Hauser	Christian	Hauptstr. 23		Dettighofen	07742-966 14	elektrotechnik.hauser@t-online.de	www.elektrotechnikhauser.de
10.	ST	Schönle Haustechnik OHG	Schönle	Marco	Industriestr. 6		Eggingen	07746-926 860	marco.schoenle@schoenle.com	www.schoenle.com
11.	PV	StromTiger GmbH	Eschbach	Matthias	Oberwihl 7	79733	Görwihl	07754 -92 98 - 13	matthias.eschbach@stromtiger.de	www.stromtiger.de
12.	ST, P\	Elektro Kohlbrenner	Kohlbrenner	Hans-Peter	Quellenweg 8	79737	Herrischried	07764-508	info@elektro-kohlbrenner.de	www.elektro-kohlbrenner.de
13.	PV	Pankratz Service GmbH	Pankratz	Roland	Liftstr. 41	79737	Herrischried	07764-294	info@pankratz-haustechnik.de	www.pankratz-haustechnik.de
14.	PV	Drayer Stefan Bereich Solarenergie und Speichertechn	Drayer	Stefan	Küssnacher Str. 13	79801	Hohentengen-Lienheim	07742-5324	stefan.draver@solarenergiezentrum-hochrhein.de	www.solarenergiezentrum-hochrhein.de
15.	PV	Elektrotechnik Geiger GmbH	Michael Jung	Corinna Geiger	Fabrikstr. 10	79771	Klettgau	07742-857 050	info@elektrotechnik-geiger.de	www.elektrotechnik-geiger.de
16.	PV	Solar&Energiespeicher Elektromeister Pascal Prezzo	Prezzo	Pascal	Im Kies 13	79771	Klettgau-Grießen	07742-922 6966 0170-890 5589	info@solarundenergiespeicher.de	www.solarundenergiespeicher.de
17.	PV	Elektro Boll Solar GmbH	Boll	Domenik	Untermarkstr. 6	79787	Lauchringen	07741-4856	mail@elektroboll-solar.de	www.elektroboll-solar.de
18.	PV	Wiederkehr Elektroanlagen	Wiederkehr	Helmut	Hohrainstr. 43	79787	Lauchringen	07741-8355 987 0171-5516 425	helmut@wiederkehr-butz.de	www.wiederkehr-butz.de
19.	PV	KBE Klaus Bächle Elektrotechnik	Bächle	Klaus	Im Schaffeld 13	79736	Rickenbach	07765-9188027	info@elektrotechnik-baechle.de	www.elektrotechnik-baechle.de
20.		Baumgartner Elektrotechnik	Baumgartner	Andreas	Kirchgasse 8	79736	Rickenbach	07765-351	info@elektrotechnik-baumgartner.de	www.elektrotechnik-baumgartner.de
21.	PV	GEBA Wärme GmbH	Rudigier	Dominik	Am Bach 4	79736	Rickenbach	07765-918 375 0160-9273 3301	rudigier@geba-gmbh.com	www.geba-gmbh.com
22.	PV	Schäuble Regenerative Energiesysteme	Schäuble	Manfred	Murgtalstr. 28	79736	Rickenbach-Hottingen	07765-919 702	info@manfred-schaeuble.de	www.manfred-schaeuble.de
23.	PV	Böhler Heizung-Solar- u. Sanitärtechnik	Böhler	Bruno	Bahnhofstr. 10 A		Stühlingen	07744-933 783	HeizungsbauBoehler@t-online.de	www.boehler-stuehlingen.de
24.	PV	Elektro Burger GbH & Co.KG	Burger	Matthias	Propsteistr. 14		Ühlingen-Birkendorf	07743-94 660	info@elektroburger.de	www.elektroburger.de
25.	PV	Rüde Elektroanlagen	Rüde	Felix	Im Vorderdorf 7	79777	Ühlingen-Birkendorf	07743-5522	info@ruede-elektroanlagen.de	www.ruede-elektroanlagen.de
26.	PV	Elektro Zimmermann GmbH	Zimmermann	Dirk	Höhenstr. 14	79777	Ühlingen-Brenden	07747-244	info@elektro-ezb.de	www.elektro-ezb.de
27.	PV	Markus Berst GmbH Elektrotechnik	Berst	Markus	Lenzburger Str. 12	79761	Waldshut-Tiengen	07751-896 630	info@mb-elektrotechnik.com	www.mb-elektrotechnik.com
28.	PV	Thater Elektroinstallationen	Thater	Andreas	Lachenstr. 11	79664	Wehr	07762-9256	elektro-thater@online.de	
29.	PV	Höfler Haustechnik GmbH	Höfler	Martin	Raimunderhof 1	79809	Weilheim-Brunnadern	07755-9394 633	info@hoefler-haustechnik.de	www.hoefler-haustechnik.de
30.	PV	Edgar Mesam GmbH Sanitār-Heizung-Solartechnik	Mesam	Edgar	Aispergweg 2	79809	Weilheim-Bannholz	07755-910 33	info@mesam.de	www.mesam.de
31.	PV	K+P Elektro GmbH	Hanninger	Marc	Lauchringer Str. 31	79793		07746-769 4800 0152-3372 2048	info@kp-elektro.com	www.kp-elektro.com

Diese Liste wurde zusammen mit der Kreishandwerkerschaft Waldshut erstellt und umfasst Betriebe, die der Weitergabe ihrer Daten zugestimmt haben. Sie erhebt also nicht den Anspruch auf Vollständigkeit und die Nennung eines Betriebs stellt daher keine Empfehlung dar. Die Energieagentur Südwest und ihre Mitarbeiter*innen stehen mit keinem dieser Betriebe in geschäftlicher Verbindung, ebenso wird über die Qualität dieser Betriebe keine Aussage getroffen.

Wir gestalten Zukunft.

Unabhängige Energie- und Klimaschutzberatung.

Die beste Möglichkeit die Zukunft vorherzusehen, ist es, sie zu gestalten.

Herrenstr. 4 Georg-Wittig-Str. 2

79539 Lörrach 79761 Waldshut-Tiengen

+49 (0)7621 161617-0 +49 (0)7751 921207-0

info@energieagentur-suedwest.de www.energieagentur-suedwest.de

Besuchen Sie uns auch auf: X in

Gefördert und begleitet durch:

Unser Sponsorpartner:

